Back

ⓘ Matematika atau sebelumnya disebut ilmu hisab adalah ilmu yang mempelajari besaran, struktur, ruang, dan perubahan. Para matematikawan merangkai dan menggunakan ..



Matematika
                                     

ⓘ Matematika

Matematika atau sebelumnya disebut ilmu hisab adalah ilmu yang mempelajari besaran, struktur, ruang, dan perubahan. Para matematikawan merangkai dan menggunakan berbagai pola, kemudian menggunakannya untuk merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang ketat diturunkan dari aksioma-aksioma dan definisi-definisi yang bersesuaian.

Terjadi perdebatan apakah objek-objek matematika seperti bilangan dan titik sudah ada di semesta, ataukah ditemukan dan diciptakan manusia. Pengkajian logis mengenai bentuk, susunan, besaran, dan konsep-konsep yang berkaitan; matematika seringkali dikelompokkan ke dalani tiga bidang: aijabar, analisis, dan geometri: walaupun demikian, tidak dapat dibuat pembagian yang jelas karena cabang-cabang mi telah bercanipurbaur; pada dasarnya aijabar melibatkan bilangan dan pengabstrakannya. anailsis melibatkan kekontmuan dan limit, sedangkan geometri membahas bentuk dan konsep-konsep yang berkaitan; sains didasarkan atas postulat yang dapat menurunkan kesimpulan yang diperlukan dari asumsi tertentu

Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan penting". Walau matematika pada kenyataannya sangat bermanfaat bagi kehidupan, perkembangan sains dan teknologi, sampai upaya melestarikan alam, matematika hidup di alam gagasan, bukan dalam realita atau kenyataan. Albert Einstein menyatakan dengan tepat bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."

Menurut Max Tegmark, makna dari "Matematika tidak merujuk kepada kenyataan" menyampaikan pesan bahwa gagasan matematika itu ideal dan steril atau terhindar dari pengaruh manusia. Uniknya, kebebasannya dari kenyataan dan pengaruh manusia ini nantinya justru memungkinkan penyimpulan pernyataan bahwa semesta ini merupakan sebuah struktur matematika. Jika kita percaya bahwa realita di luar semesta ini haruslah bebas dari pengaruh manusia, maka semesta haruslah berstruktur matematika.

Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis terwujud dalam kegiatan manusia sejak adanya rekaman tertulis. Argumentasi matematika yang ketat pertama kali muncul didalam Matematika Yunani, terutama didalam karya Euklides, Elemen.

Matematika selalu berkembang, misalnya di Tiongkok pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.

Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.

Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri. Mereka berupaya menjawab pertanyaan-pertanyaan yang muncul di dalam pikirannya, walaupun belum diketahui penerapannya. Namun, kenyataannya banyak sekali gagasan matematika yang sangat abstrak dan tadinya tak diketahui relevansinya dengan kehidupan, mendadak ditemukan penerapannya. Pengembangan matematika murni dapat mendahului atau didahului kebutuhannya dalam kehidupan. Penerapan praktis gagasan matematika yang menjadi latar munculnya matematika murni sering kali ditemukan kemudian.

                                     

1. Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μάθημα máthēma, yang berarti pengkajian, pembelajaran, ilmu yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός mathēmatikós, berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικὴ τέχνη mathēmatikḗ tékhnē, di dalam bahasa Latin ars mathematica, berarti seni matematika.

Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Prancis les mathématiques dan jarang digunakan sebagai turunan bentuk tunggal la mathématique, merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica Cicero, berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά ta mathēmatiká, yang dipakai Aristoteles, yang terjemahan kasarnya berarti "segala hal yang matematis". Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

                                     

2. Sejarah

Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak. Abstraksi mula-mula, yang juga berlaku pada banyak binatang, adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk sebagai contoh memiliki jumlah yang sama.

Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktu - hari, musim, tahun. Aritmetika dasar mengikuti secara alami.

Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Pertengahan Mesir, Lembaran Matematika Rhind.

Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi. Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.

Selama Zaman keemasan Islam, khususnya abad ke-9 dan abad ke-10, matematika mendapatkan banyak inovasi penting yang dibangun diatas landasan matematika Yunani: kebanyakan dari inovasi ini termasuk kontribusi dari matematikawan Persia seperti Al-Khwarizmi, Omar Khayyam dan Sharaf al-Dīn al-Tūsī.

Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 tahun pertama beroperasinya MR kini melebihi 1.9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."

.

                                     

3. Ilham, matematika murni dan terapan, dan estetika

Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdagangan, pengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.

Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi sering kali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner menyebutnya Keefektifan luar biasa matematika sampai taraf tak masuk akal dalam Ilmu Pengetahuan Alam membutuhkan penjelasan.".

Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan pada zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara matematika murni dan matematika terapan: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program sarjana mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk statistika, riset operasi, dan ilmu komputer.

Mereka yang berminat kepada matematika sering kali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan bukti yang diberikan, semisal bukti Euclid yakni bahwa terdapat tak-terhingga banyaknya bilangan prima, dan di dalam metode numerik yang anggun bahwa perhitungan laju, yakni transformasi Fourier cepat. G. H. Hardy di dalam A Mathematicians Apology mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.

Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian Paul Erdős sering berkutat pada sejenis pencarian akar dari "Alkitab" di mana Tuhan telah menuliskan bukti-bukti kesukaannya. Kepopularan matematika rekreasi adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.



                                     

4. Notasi, bahasa, dan kekakuan

Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16. Pada abad ke-18, Euler bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti notasi musik, notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.

Bahasa matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti atau dan hanya memiliki arti yang lebih presisi daripada di dalam percakapan sehari-hari. Selain itu, kata-kata semisal terbuka dan lapangan memberikan arti khusus matematika. Jargon matematika termasuk istilah-istilah teknis semisal homeomorfisma dan terintegralkan. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "ketat" atau "kaku" rigor. Jadi, jika suatu kata sudah dimaknai dengan makna tertentu, maka selanjutnya kata itu harus merujuk ke makna tadi. Tak boleh berubah makna. Itulah makna "ketat" ini di bahasa matematika.

Penggunaan bahasa yang ketat secara mendasar merupakan sifat pembuktian matematika. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "teorema" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini. Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: bangsa Yunani menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan Isaac Newton kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang bukti berbantuan-komputer. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.

Aksioma menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai lambang, yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu sistem aksioma. Inilah tujuan program Hilbert untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut Teorema ketaklengkapan Gödel tiap-tiap sistem aksioma yang cukup kuat memiliki rumus-rumus yang tidak dapat ditentukan; dan oleh karena itulah suatu aksiomatisasi terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan di dalam konteks formal tidak lain kecuali teori himpunan di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.

                                     

5. Matematika sebagai ilmu pengetahuan

Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan". Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti lapangan pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah pada masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan.

Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan.

Banyak filsuf yakin bahwa matematika tidak dapat dibuktikan maupun disangkal berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper. Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur dugaan, lebih daripada sebagai hal yang baru." Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versi pemalsuan kepada matematika itu sendiri.

Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu misalnya fisika teoretis adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, J. M. Ziman, mengajukan pendapat bahwa ilmu pengetahuan adalah pengetahuan umum dan dengan demikian matematika termasuk di dalamnya. Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. Intuisi dan percobaan juga berperan penting di dalam perumusan konjektur-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan lainnya.

Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of Science, Stephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.

Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika.

Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan seperti di dalam seni atau ditemukan seperti di dalam ilmu pengetahuan. Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.

Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal medali lapangan, dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan.

Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan.

Sebuah daftar terkenal berisikan 23 masalah terbuka, yang disebut "masalah Hilbert", dihimpun pada 1900 oleh matematikawan Jerman David Hilbert. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan.

Sebuah daftar baru berisi tujuh masalah penting, berjudul "Masalah Milenium", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah US$ 1 juta, dan hanya satu hipotesis Riemann yang mengalami penggandaan di dalam masalah-masalah Hilbert.

                                     

6. Bidang-bidang matematika

Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan. Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan dasar, ke matematika empirik dari aneka macam ilmu pengetahuan matematika terapan, dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

                                     

6.1. Bidang-bidang matematika Besaran

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat "semua bilangan" dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.

Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional "pecahan". Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuaternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan alef, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.



                                     

6.2. Bidang-bidang matematika Ruang

Pengkajian ruang bermula dengan geometri – khususnya, geometri Euklides. Trigonometri memadukan ruang dan bilangan, dan mencakupi Teorema Pythagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, geometri non-Euklides yang berperan penting di dalam relativitas umum dan topologi. Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.

Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur Poincaré yang telah lama ada dan teorema empat warna, yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.

                                     

6.3. Bidang-bidang matematika Perubahan

Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyelidikinya. Fungsi-fungsi muncul di sini sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berperubah real dikenal sebagai analisis riil, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.

Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi biasanya berdimensi tak-hingga. Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.

Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai persamaan diferensial. Banyak gejala di alam dapat dijelaskan menggunakan sistem dinamik; teori kekacauan berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara maksudnya semua teorema yang dapat dibuktikan adalah benar, maka tak-lengkap maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu.

Gödel menunjukkan cara mengonstruksi, kumpulan sembarang aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursi, teori model, teori pembuktian terpaut dekat dengan ilmu komputer teoretis.

                                     

6.4. Bidang-bidang matematika Matematika diskret

Matematika diskret adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya - Mesin turing.

Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, oleh sebab itu berkenaan dengan konsep-konsep semisal pemadatan dan entropi.

Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah "Masalah P versus NP", salah satu Masalah Milenium.



                                     

6.5. Bidang-bidang matematika Matematika terapan

Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis dan wilayah lainnya. Salah satu bagian penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey dan pengkajian pengamatan memerlukan statistika. Tetapi banyak statistikawan tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.

Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pembulatan atau sumber-sumber galat lain di dalam komputasi.

                                     

6.6. Bidang-bidang matematika Matematika murni

Matematika murni merupakan cabang matematika yang digunakan untuk pengembangan prinsip-prinsip matematika. Bahasan pada matematika murni tidak mempertimbangkan penerapan praktis matematika dalam sains. Kehadiran matematika murni bertujuan untuk mengatasi masalah-masalah yang timbul selama penerapan matematika murni dalam berbagai disiplin ilmiah.

                                               

Bilangan Hindu-Arab

Sistem bilangan Hindu-Arab adalah sistem angka dengan kedudukan persepuluh yang dirancang pada abad ke-9 oleh ahli matematika India, yang kemudian diadaptasi oleh ahli matematika Persia dan ahli matematika Arab, dan kemudiannya tersebar ke dunia barat pada zaman Pertengahan.

Free and no ads
no need to download or install

Pino - logical board game which is based on tactics and strategy. In general this is a remix of chess, checkers and corners. The game develops imagination, concentration, teaches how to solve tasks, plan their own actions and of course to think logically. It does not matter how much pieces you have, the main thing is how they are placement!

online intellectual game →